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ABSTRACT

It is the nature of complex systems, composed of many interacting elements, that unanticipated
phenomena develop. Computer simulation, in which the elements of a complex system are implemented as
interacting software objects (actors), is an effective tool to study collective and emergent phenomena in
complex systems. A new cognitive architecture is described for constructing simulation actors that can,
like the intelligent elements they represent, adapt to unanticipated conditions. This cognitive architecture
generates trial behaviors, estimates their fitness using an internal representation of the system, and has an
internal apparatus  for evolving a population of trial behaviors to changing environmental conditions.

A specific simulation actor is developed to evaluate surveillance radar  images of moving vehicles on
battlefields. The vehicle cluster location, characterization and discrimination processes currently performed
by intelligent human operators were implemented into a parameterized formation recognition process by
using a newly developed family of 2D cluster filters. The mechanics of these cluster filters are described.
Preliminary results are presented in which this GSM actor demonstrates the ability not only to recognize
military formations under prescribed conditions, but to adapt its behavior to unanticipated conditions that
develop in the complex simulated battlefield system.

1. INTRODUCTION

The modern theater-level battlefield is a complex, dynamic system that defies analytical approaches.
It consists of thousands of interacting elements, including mounted and dismounted infantry troops,
vehicles of many types, artillery, command posts of various levels, local and space-based sensor  and
communication systems, helicopters,  aircraft, etc., as well as terrain, structures, and weather. Phenomena
typically emerge in systems of this nature, which would never have been predicted, even with very
elaborate models.1,2  That complex systems exhibit emergent phenomena  has two consequences of interest
here. First, actor-based computer simulation is a natural tool for studying battlefield systems, providing a
level of fidelity that can not be attained with analytic approaches. In actor-based simulation, simulation
objects (representing  entities on the real battlefield) are implemented on a distributed computer network,
and they interact through asynchronous message passing. The second consequence is that cognitive
abilities make up an essential aspect of many of the battlefield actors. Their ability to adapt their behavior to
their perception of battlefield conditions is fundamental to what they do and how they interact with other
elements. Static rule-based, connectionist,  or algorithmic models are insufficient for building the software
actors that represent elements with cognitive ability.

  This paper describes the development of simulation actors that emulate a human operator’s ability to
recognize troop formations, including the ability to adapt to complex, dynamic battlefield conditions. The
process of formation recognition has been automated through algorithms that evaluate and manipulate sets
of 2D cluster filters. The behaviors invoked by an actor as it performs this formation recognition process is
determined by the values of a set of control parameters.  A new cognitive architecture has been developed
by which an actor can adapt these control parameters to meet unanticipated  external conditions. The two
main components of the architecture are an evolutionary apparatus, which generates and maintains a



population of trial cognitive behaviors, and a mechanism for evaluating the fitness of a trial cognitive
behavior, based on an internal simulation of the external environment. A demonstration of real-time
adaptation to dynamic battlefield conditions is presented.

2. BATTLEFIELD SIMULATION WITH THE JSTARS GSM

The Joint Surveillance Target Attack Radar System (JSTARS)3 is an airborne sensor  platform that
flies in friendly airspace and uses Doppler radar to detect moving ground vehicles. Although it has a
synthetic aperture radar (SAR) mode for obtaining higher resolution images of stationary structures, its
primary utility is detecting moving tanks and armored personnel carriers.  The system is able to cover large
areas of a theater or battlefield, on the order of 100 km square. The radar return is down-linked to ground
station modules (GSM). There is typically a GSM attached to each maneuver brigade. The brigade
command post uses the JSTARS information to maintain situational awareness, and to direct fire support.
These brigade level GSMs typically focus on control areas of 20-40 km in size. In addition, there is
usually a GSM attached to division or corps headquarters. This GSM typically covers a larger area (scale
size 40-80 km), and receives queuing messages from the brigade-level GSM’s. The primary task of the
GSM operator is to recognize  and identify opposing force units moving within their assigned control
areas. The GSM operator generally has a list of assigned tasks, based on current intelligence. A typical
task might be to watch for a battalion strength unit moving towards a particular region of the battlefield ( a
“named area of interest”) and then report its estimated time of arrival to the division headquarters.  The
GSM is one of many elements that comprise the complex battlefield system.

Battlefield simulation is developing into a valuable tool for training, mission planning, and assessing
new systems and tactics.4 The battlefield is an example of a complex system, which consists of many
interacting elements. Collective phenomena emerge from these interactions, which produce an
unpredictable, complex and dynamic environment for the elements within the system. In the simulation
approach to studying such systems, the various elements that interact in a battlefield are simulated as
software objects. These objects reside on a computer network, and  interact with each other through
asynchronous message passing (hence they are known as ‘actors’). Battlefield simulations are composed
of many types of actors, including tank and motorized rifle units (squads, platoons, companies, etc.),
artillery units, command posts, opposing force units, the JSTARS platform, and JSTARS GSM’s.

Each actor in a simulation has three segments: a physical state, a set of actions, and a cognitive
segment. The physical state of an actor includes such data as its location and speed, its status, and the data
it manipulates. For the GSM, the physical state includes  the current moving target indicator (MTI) screen,
a list of currently recognized units, and possibly the values of various parameters it uses to perform its
tasks. The set of actions provides the methods by which an actor manipulates its own physical state and
data, and the messages it can send, and handlers for messages it receive from other actors. The physical
state and the collection of possible actions together  form an object that is appropriate for object-oriented
programming.  The third segment, the cognitive segment, allows the actor to control its own actions,
rather than having them invoked by external calls. The cognitive segment determines which actions are
taken for various physical states, and can respond to changes in the physical state by appropriate actions.
For the GSM actor, the cognitive segment must be able to find clusters on the MTI, recognize various
military formations, and select appropriate actions to manipulate the list of recognized units and the MTI
data, and decide on which messages to send.

3. A COGNITIVE ARCHITECTURE FOR ADAPTIVE ACTORS

Research in the fields of artificial intelligence has identified many of the essential cognitive elements,
and various ways of combining them into cognitive architectures that allow machines to exhibit varying
degrees of intelligence.5,6  Some of these essential cognitive elements (memory, sensory components,
perceptor, productions which invoke actions when the memory meets certain conditions, etc.) have been
combined with the biological evolutionary view of intelligence7 to develop  a cognitive architecture  that
extends the capability of the cognitive segment of simulation actors. The methodology originated in an off-



line process for automated behavior discovery in flight and fire controllers of an airborne laser simulation
actor.8 That off-line methodology has now been internalized into the actor to give real-time or on-line
adaptive capability.

A schematic of this architecture is shown in Fig. 1. The actor’s cognitive segment is divided into two
main parts: an autonomous behavior which performs low-level cognition; and a higher level mechanism
that can adapt  the low-level behavior to changing environmental conditions.  In non-adaptive actors, the
cognitive segment consists only of the autonomous behavior, which, along with the actor’s physical state
and collection of actions, forms the actor . The autonomous behavior relating actions to physical state can
be implemented as a collection of algorithms, a control system, a simple set of rules, an elaborate set of
rules known as an expert system, or a neural network of various configurations. Whatever the
implementation of the autonomous behavior, there will be a set of adjustable control parameters that
determine the behavior (e.g. the set of connection weights for a neural network representation). In non-
adaptive actors, the adjustable control parameters that control the actor’s autonomous behavior are pre-
programmed (or pre-trained) to build in expertise. The high-level component of this cognitive architecture
provides a mechanism for the actor to adapt its low-level autonomous behavior by adjusting the control
parameters. In the GSM actor, it is useful to be able to extract the current strategy, so the autonomous
behavior set is represented as a parameterized rule set, where the parameters that determine the behavior
have easily extractable meaning.
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Fig. 1. The cognitive architecture that extends the pre-programmed autonomous cognitive element to
higher-level cognition.

Two primary elements make up the high-level cognitive part: a mechanism that can estimate the
effectiveness of trial behaviors using an internal representation of the external world, and an evolutionary
apparatus.  The internal representation adjusts itself to correspond to currently perceived external
conditions. For the GSM actor, the internal representation  has an element that generates (and stores in
memory) random MTI screens  that are consistent with the currently perceived  battlefield conditions
(expected number of battalions, current visibility conditions, terrain, weather, expected opposing forces
tactics, etc.), which are stored as part of the actor’s physical state data.  The perceived external conditions
can be changed by direct sensors, or by messages passed from the command post to which the GSM is
attached. There is also an internal representation of the actor’s low-level autonomous behavior, and a
means of evaluating how well a trial autonomous behavior (represented by a trial set of control parameters)



would perform against the currently perceived external conditions. Since the fitness of a given behavior set
will have a large stochastic component, the internal fitness estimation must evaluate a trial behavior over
many possible cases  to obtain a valid fitness estimate. In the case of the GSM, the fitness estimation
requires hundreds of independent random MTI screens.  

The evolutionary apparatus  generates and maintains a population of alternative behavior sets, in a
working memory dedicated to the higher level cognition. The collection of all possible behaviors
(represented by all possible control parameter settings) evaluated in all possible environments consistent
with perceived conditions,  provides a well-posed problem for the genetic algorithm.9 The autonomous
behavior produced by the set of control parameters is encoded into a chromosome. A population of
chromosomes is evolved by the evolutionary apparatus, using genetic cross-over, mutation, and fitness
based selection. The evolutionary apparatus uses the internal representation to evaluate various trial
behaviors. The evolutionary process  occurs in a thread in the actor. When a new behavior set is found that
performs better than the current  autonomous  behavior set in internal evaluation against the internal
representation, that new, better adapted behavior is then used for the autonomous behavior.

4. THE AUTONOMOUS COGNITIVE ELEMENT OF THE GSM ACTOR

The starting point for developing an actor that can emulate a human operator is the training that the
human operators receive. GSM operators currently undergo a U.S. Army training program, which
provides a model for the formation recognition process.2 This process is seen to consist of three steps. The
first step is to locate clusters of blips on the MTI screen. The 2D moving target indicator screen contains
on the order of a million pixels, of which on the order of a hundred may be lit. While cluster location is
easily accomplished by the human eye and brain, the complexity of this process becomes apparent when
automation is attempted. The second step is to select and characterize the cluster of blips. The GSM
operator selects a cluster manually with a mouse selection box. The choice of exactly where to put the
selection box is a cognitive decision-making process. There are then several on-screen buttons which
cause the MTI to characterize the selected cluster, as to the number of vehicles or blips, their speed and
heading, whether they are tracked or wheeled vehicles. The actual characterization of a cluster is a
mechanical rather than cognitive process. The third step is to decide whether the cluster is a military unit of
interest. This is accomplished by applying a set of rules to the cluster characteristics.  These rules can be
cast into standard productions of the form IF (condition c) THEN (perform action A). The conditions are
based on cluster characteristics such as the number of wheeled blips, the size of the cluster, etc. An
example production in a search for battalions might be: IF (total number of blips in cluster is less than 16)
THEN (mark this cluster as “not a battalion”, and look for another cluster).

The autonomous behavior of the GSM actor takes a list of blip locations and generates a list of
formations which it recognizes.  It manipulates data, performs searches, and makes decisions, but it does
not learn. Any adaptation it performs has to be pre-programmed (as in IF condition x is perceived, then
use strategy sx, otherwise use strategy s0). It has a set of behaviors which are invoked according to the
current physical state of the GSM. It is constructed on the three steps which the human operator uses to
recognize formations. There is a process for searching for clusters of blips, based on a set of translatable
2D filter functions. There is a process for characterizing a cluster once it is located, and finally there is a
process for deciding whether a cluster is a battalion or other formation. When a battalion is found, it is
added to a list of recognized battalions, and the corresponding blips are removed from the list of blips. The
entire process of recognizing battalions is subject to a set of control parameters, such as the number of
steps to take in searching for a cluster before evaluating the cluster.

Opposing forces units may be deployed in a wide variety of formations.  The lowest level formation
is the platoon, which can consist of three or four squads (one vehicle, tank or armored personnel carrier
per squad), in line, column, two-up-one-back, chevron-left or right, echelon-left or right, bounding-over-
watch, or other formation. There is a similar variety of possible formations for platoons within companies,
and companies within battalions. While each of these formations has a doctrinal position for each sub-unit,



the actual positions of the vehicles on the battlefield will deviate from the doctrinal position. These
deviations can depend on many factors which change with the dynamic battlefield.  In addition, there are
atmospheric phenomena, line-of-sight blockage, etc. that prevent some vehicles from being detected by the
JSTARS. There are thus hundreds of possible doctrinal formations for a battalion, and a possibly wide
range of variation within each one. In addition, a formation can be moving in any direction. The formation
recognition process must be able to handle the arbitrary orientation of formations.

4.1 Complete set of ortho-normal 2D cluster filters.
A family of sets of filter functions has been developed to search for and characterize clusters in 2D

data. These filters are formed by the product of a 2D Gaussian and a set of 2D polynomials.  The scale size
and location of the Gaussian can vary, and the polynomials are defined in terms of the scale size and
location of the Gaussian. There is a complete set of orthogonal 2D filters for every triplet of values of three
adjustable parameters: x0 and y0 (giving the location of the center of the Gaussian in the 2D plane), and d
(the standard deviation of the Gaussian). The terms in the polynomials contain powers of the transformed
variables ξ=(x-x0)/d and η=(y-y0)/d. The shape of a filter function is invariant, but its location and scale
size changes according to the values of x0, y0 and d.

The 2D Gaussian (normalized by a π1/2 factor to simplify the polynomials) is given by g(ξ, η)= exp[-

(ξ2+ η2)/2]/π1/2.  If the jth polynomial is given by Vj(ξ, η), then the jth cluster filter will be Sj(ξ, η)=Vj(ξ,

η)g(ξ, η). If the set of filter functions is orthogonal, then single filter coefficients and combinations of a
few coefficients can have direct physical interpretations as cluster characteristics.  The filter functions are
normalized to unity. The ortho-normal condition on the set of cluster filters indicates that the filters can be
found by obtaining a set of 2D polynomials that are ortho-normal with respect to a weight function of
exp[-(ξ2+ η2)]/π.
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A 1D set of orthogonal functions based on 1D Gaussian weighting has been used extensively in
time-domain signal processing applications.10-15  In the 1D case, the filter functions are composed of a 1D
Gaussian multiplied by Hermite polynomials. Several applications have been published using filters
consisting of a 2D Gaussian multiplied by 2D polynomials formed from the cross product of a Hermite
polynomial in ξ and another Hermite polynomial in η.16-18  In this crossed-Hermite approach  the are, for

example, three second order filters, which have polynomials given by H0(ξ)H2(η), H1(ξ)H1(η), and

H2(ξ)H0(η), where the Hermite polynomials are Hn(ξ)={1, 2ξ, 4ξ2-2, ...}. This does produce a complete
set of orthogonal filter functions, which has been applied to the physiology of the eye and to machine
vision.

An alternative orthogonal set is developed here that has rotational invariance properties not possessed
by these crossed-Hermite filters. There are characteristics of clusters that are independent of the orientation
of the cluster, such as ellipticity of a bounding ellipse,  “triangularity”, or central tendency.  Rotational
symmetries are therefore a useful criteria for selecting a particular set of orthogonal filter functions out of
the infinite number of possible sets. The 2D polynomials are first separated into radial and angular
functions.

Vj ( , ) = Vj ( cos , sin ) = Rn ,m ( )Θm ( )   (2)

where = 2 + 2 , = cos( ), = sin( ). A slightly modified version of Born and Wolf’s derivation
of the Zernike polynomials19   will allow the determination of the radial and angular functions. The



orthogonal set containing  angular functions with every m-fold rotational symmetry is given by the set for
all integer m ≥ 0 of

Θm( ) =
1 for m = 0

2 cos(m )

2 sin(m )
〉for m > 0 (3)

In this formulation of Θ, it has been assumed that only real valued functions are of interest here. To allow

for expansion of complex functions onto these filter functions, angular functions of the form exp(±imθ)
would be used instead. The rest of the following would be unchanged, except for the normalization and
indexing scheme.  For a given value of m, Rn,m(ρ) is then a polynomial in ρ of order n, containing only
terms with powers m, m+2, ..., n. m and n are either both even or both odd.  For a given n, the allowed
values of m are  n, n-2, n-4,..., down to 0 or 1. For a given value of n, if m is 0, there is one filter
function, and when m is not 0 there are two filter functions, one using the sine and one using the cosine.
There are thus a total of n+1 filter functions with a given value of n (i.e. of order n). This restriction on
powers of terms contained in Rn,m allows the conversion  Rn,m(ρ)=tm/2Qk(t), where t=ρ2. Qk(t) is then a 1D
polynomial of order k which contains terms of all integer powers from 0 through k. k is related to n and m
by k=(n-m)/2. The orthogonality condition (1), along with the definition of the angular functions,  gives a
requirement for Q(t):

dt
0

∞

∫ tme− tQk (t)Qk' (t) = kk' (4)

The set of orthogonal polynomials that satisfies (4) is the set of generalized Laguerre polynomials20  ,

appropriately normalized to Qk (t) = (( n−m )/2)!
((n +m )/2)! Lk

m(t) . The coefficient of the ith power of t in the generalized
Laguerre polynomial Lk

m(t)  is given by (-1)i(k+m)!/[(m+i)!(k-i)!i!]. The radial polynomials, in terms of
these generalized Laguerre polynomials, are  simply

Rn,m( ) = (( n−m )/2)!
((n +m )/2)!

m L (n− m) / 2
m ( 2) (5)

 The complete set of ortho-normal Gaussian weighted 2D polynomial filters with orientation invariance
properties is

S j ( cos , sin ) = ((n −m )/2)!
(( n+m )/2)!

m L (n− m) / 2
m ( 2) Θm ( )exp(− 2 /2) (6)

A similar result, cast as generalized Laguerre polynomials with argument ξη instead of ρ2, was given by

Dodonov and Man’ko.22   Their orthogonal set has symmetries with respect to reflection through the ξ=η
line, rather than the rotational symmetries desired here.

The Zernike indexing convention21   relating j, m and n can be adopted.  For m=0, the index is
j=n(n+1)/2+1. For m≠0, there are two functions for each n,m pair, one with index j=n(n+1)/2+m and the
other with j=n(n+1)/2+1+m. The one with the odd j index takes the sin(mθ) angular function, and the one

with the even j takes the cos(mθ)  angular function. The first eleven polynomials are given in Table 1, in

both polynomial form Vj(ξ,η), and as separated  radial and angular functions, Rn,m(ρ)Θm(θ). The set of

cluster filters is obtained by multiplying the polynomials by the Gaussian, Sj(ξ,η)=Vj(ξ,η)g(ρ).



j n m V j( , ) = Rn,m ( )Θm ( )

1 0 0 1 = 1

2 1 1 2 = 2 cos( )

3 1 1 2 = 2 sin( )

4 2 0 1 − 2 − 2 = 1− 2

5 2 1 2 = 2 sin(2 )

6 2 1 2 − 2 = 2 cos(2 )

7 3 1 2 − 2 − 3 = (2 − 3)sin( )

8 3 1 2 − 2 − 3 = (2 − 3)cos( )

9 3 3 3 2 − 3 / 3 = ( 3 / 3)sin(3 )

10 3 3 3 / 3 − 3 2 = ( 3 / 3 )cos(3 )

11 4 0 1 −2 2 − 2 2 + 4 / 2 + 4 /2 + 2 2 = 1− 2 2 + 4 /2
Table 1. The first 11 orthogonal cluster polynomials.

This set of cluster functions forms a complete orthogonal set over the 2D plane. There is a one to one
correspondence with the Zernike functions, where the corresponding functions  have the same angular
dependence. (The 2D Zernike polynomials form a complete orthogonal set over a unit circle, with a
constant weighting function, rather than over the 2D plane with a Gaussian weighting.) An optical
interpretation can accordingly be given to the various filter functions. The S2 and S3 filters can be identified
with x and y tilts or offsets, the S4 filter can be identified with defocus or spread, the S5 and S6 filters can
be identified with astigmatism or ellipticity, and the S7 and S8 filters can be identified with coma.

Any function in the x-y plane can then be expanded onto a complete set of ortho-normal cluster
filters:

f (x, y) =
1

d
c jS j (

xi − x0

d
,
yi − y0

d
)

j=1

∞

∑ (7)

where the expansion coefficients are

c j(x0 ,y0 ,d) =
1

d
dx dy f (x , y)∫∫ S j (

xi − x0

d
,
yi − y0

d
) (8)

If the MTI pixels are either on or off (indicating the detection or non-detection of a vehicle at the
corresponding location), the MTI intensity distribution can be represented as a sum of Dirac functions, one

for each of N blips, where the ith blip is at location (xi, y i) for i=1,...,N: f (x, y) = (x − xi , y − yi )
i =1

N

∑ . In

this case, the expansion coefficients are obtained by a sum over the N blips:

c j(x0 ,y0 ,d) =
1

d
S j (

xi − x0

d
,
yi − y0

d
)

i=1

N

∑ (9)

It is much more efficient to sum over actual blips with (9), than to perform the weighted sum over all
pixels required by the formulation of (8). Each triplet {x0,  y0, d} has a corresponding complete set of
ortho-normal cluster filters.



4.2 Search for clusters of size d.
Suppose the data f(x,y) contains a cluster of some size D (e.g. the rms distance from the cluster

centroid to the blips in the cluster), containing n blips, with centroid located at  (xc, yc).  The set of cluster
filters with x0 and y0 set to the cluster centroid, and  d~D, will then have c2 and c3 nearly equal to 0. The
contribution of blips outside the cluster to these coefficients is very small because of the exponential factor
in the filters. For the blips in the cluster, the contribution to c2 of those blips to right of the centroid (xi>x0)
tend to cancel that of the blips to the left (xi<x0). Similar cancellation of contribution occurs  in the y
direction for c3. If the cluster filter location is some distance away from the cluster centroid, but far from
other data points not belonging to the cluster, it is easy to see that the cluster centroid can be estimated by

x c = x0 + c2 (x0 , y0 ,d)/ 2c1(x0 , y0 ,d)

yc = y0 + c3(x0 , y0 ,d)/ 2c1(x0, y0 , d)
(10)

This suggests a simple iterative cluster search algorithm in which 1) a filter set is created with some scale
size, d, and random center location (x0, y0); 2) the coefficients c1, c2, and c3 are evaluated for this filter set
with the data; 3) a cluster centroid location is estimated using (10); 4) the set of filters is moved to x0=xc
and y0=yc; and 5) go back to step 2. Several loop exit criteria can be used: loop until c2 and c3 are
sufficiently close to 0, or a preset number of loops have been tried, or a preset number of floating point
operations have been expended. Even one blip prevents c1 from taking a value of 0, although it can
become very small, and must be checked for under-flow before dividing.

This method has been found by computer simulation to be extremely efficient and effective at
locating clusters. The search is tuned to find clusters of any desired size range  by selecting the value of d.
The method will locate the center of a cluster of size ~d  even it is formed from a group of smaller sub-
clusters . On the other hand, the method will zero in on a cluster of size ~d even if this cluster is one of
many clusters in a larger super-cluster. The method fails when clusters of size ~d are separated by
distances also on the order of d. In this case, the search can get stuck in between clusters. This situation
can be avoided by searching for and characterizing larger clusters first.

4.3 Characterization of a cluster
Once a centroid has been found, (i.e. the filter location parameter is such that the tilt coefficients c2

and c3 are zero), the size, shape and number in the cluster can be evaluated through the second order filter
coefficients, c4, c5, and c6. These three coefficients can be used to determine an ellipse that best
characterizes the cluster. Suppose a cluster of n blips could be described by an elliptical bi-Gaussian
distribution, with semi-major standard deviation a, semi-minor standard deviation b, and orientation angle
θ(specifying the angle from the x-axis counter-clockwise to the major axis of the ellipse. This cluster
distribution is given by

G(x, y;n,a,b, ) =
n

2 ab
exp −

(x − x0)cos − (y − y0 )sin[ ]2

2a2 −
(y − y0 )cos + (x − x0 )sin[ ]2

2b2

 
 
 

 
 
 

(11)

The constant-density contours of this distribution are ellipses, with the ratio of major to minor axis given
by a/b, and the orientation of the major axis specified by its angle counter-clockwise from the x axis, θ.

The ellipse centered at  x0, y0, with semi-major axis a, and semi-minor axis b, with orientation angle θ,
contains 1-e-1/2 = 39.35% of the distribution.



The procedure described in Section 4.2 is used to move x0 and y0 to the center of the cluster. Then,
the second-order filters are evaluated.  For an ideal elliptical Gaussian cluster, the coefficients of the
second-order cluster filters  can be found analytically:

c1 = n 1 + a2 / d2( ) 1 + b2 / d2( ) c4 =
c1 1− a2b2 / d 4( )

1+ a2 / d2( ) 1+ b2 / d2( )
c5 =

c1 sin(2 ) a2 / d2 − b2 / d4( )
1 + a2 / d2( ) 1 + b2 / d2( ) c6 =

c1 cos(2 ) a2 / d 2 − b2 / d4( )
1 + a2 / d2( ) 1+ b2 / d2( )

(12)

The parameters describing the elliptical Gaussian distribution can be obtained from the second-order filter
coefficients by inverting (12), giving

a = d
c1 − c4 + c5

2 + c6
2

c1 + c4 − c5
2 + c6

2
b = d

c1 − c4 − c5
2 + c6

2

c1 + c4 + c5
2 + c6

2
= arctan2( c5,c6) /2 (13)

Rather than evaluate the arctan for θ, the values of sin(θ) and cos(θ) (which together characterize the
orientation of the ellipse) can be calculated from the coefficients without any trig evaluations, for a slight
gain in computational efficiency. The coefficients c1 and c4 can be used by themselves to estimate the area
of the cluster under the approximation that the ellipticity was small. This area estimate, πab = πd2(c1-
c4)/(c1+c4), is independent of the orientation of the cluster.

An actual cluster of blips may not be well described by an elliptical Gaussian distribution, but the
cluster length, width, and orientation can be characterized by the a, b, and theta values derived from the
coefficients produced by the cluster. A crisp ellipse can be assigned to the cluster, by multiplying a and b
by a crisping factor. A blip inside this crisp ellipse will be counted as part of the cluster, while blips
outside the cluster will not. This method produces an ellipse for a given cluster that is independent of the
value of the filter scale parameter d over a surprisingly large range of d. An appropriate value for the
crisping factor  will depend on the nature of the clusters. If clusters tend to have outliers attached to them,
a larger crisping factor is appropriate. On the other hand, if clusters have sharp boundaries, or occur in
close proximity to other clusters, a smaller crisping factor is appropriate. The crisping factor is a parameter
that can be adapted to battlefield conditions.

Higher order filters can be used to further characterize the clusters. The four third-order filter
coefficients (c7 through c10), for example, can be used to characterize the “triangularity” of a cluster. This
would allow the GSM to distinguish between a battalion with three companies in a two-up-one-back
formation, and a battalion with a four companies in a square formation, based on four filter coefficients.
The evaluation of higher-order filters requires relatively few additional computations. The evaluation of
one filter requires one exponentiation and a few multiply and adds for each of the N blips in the list of
blips. Evaluation of an additional filter (different j, same x0, y0, and d) does not require the exponentiation
to be repeated, but only a few additional multiply and adds per blip to compute the additional polynomial
value. The ξ−η polynomial form can be used to avoid the relatively expensive trig function evaluations.
The computational requirement for locating and characterizing a cluster  is linear in the number of blips.

4.4 Evaluation of the cluster
Once a cluster has been located, and had its length, width, orientation, and number of blips

characterized, it must be evaluated to determine whether it was produced by a military formation, and if so,
by what military formation. This recognition process is implemented as a parameterized rule set. The rules
contain adjustable parameters. The appropriate value to take for these parameters depends on many factors,
such as visibility, terrain roughness, whether units are at full strength, or have been attrited or reinforced,



and the tactics in current use. A simple rule set that mimics the expertise provided by the basic GSM
operator training for recognizing battalions is:
IF (width of cluster > 2.5 km) THEN reject cluster as battalion
IF (length of cluster > 4.0 km) THEN reject cluster as battalion
IF (number in cluster > 80) THEN reject cluster as battalion
IF (number in cluster < 25) THEN reject cluster as battalion
IF (more than 10% of blips in cluster differ from cluster speed by more that 10 %) THEN reject cluster as
battalion
IF (more than 10% of blips in cluster differ from cluster heading by more that 20°) THEN reject cluster as
battalion
IF (cluster is split by a terrain feature) THEN reject cluster as battalion
IF (all other rules fail to reject cluster) THEN accept cluster as a battalion

4.5 The parameterized  autonomous formation recognition process
The pieces can now be assembled into an algorithm for locating, characterizing and discriminating all

clusters in a 2D MTI screen. The first step is to get the moving target indicator image. The second step is
to convert the 2D pixel array into a list of blips, each with an x and y location, and put the blip list into
working memory. This can include pre-filtering to remove isolated blips. The third step is to perform a
series of cluster evaluations using the cluster filters. The last step is to report any recognized formations.
The third step is accomplished by looping over six sub-processes consisting of 1) initializing the filter to a
random location and scale size within preset limits, 2) finding a cluster centroid by iterative refinement of
the filter location based on c2 and c3, 3) characterizing the cluster length, width, orientation and number
using c4, c5, and c6, 4) deciding whether the cluster is a battalion by evaluating the rule-based production
system, and updating the list of recognized battalions if necessary, 5) removing the cluster from the blip
list, if appropriate conditions are met, and 6) determining if the search is finished.

The autonomous formation recognition algorithm has several adjustable controlling parameters.  The
number of search steps allowed to locate the cluster centroid can take values from 1 and up. The initial
filter location is taken as a uniformly distributed random variate within the MTI control area, but alternate
distributions of starting locations could be used. The filter scale parameter is initialized prior to each cluster
search from a uniform random variate on the interval dmin to dmax, so that dmin and dmax are adjustable control
parameters. The performance of the formation recognition process depends sensitively on the crisping
factor γ. Appropriate values range from 1 to 3, depending on the nature of the clustered data. The
minimum and maximum number of blips in a cluster that will be called a battalion can also be considered
control parameters, in that these two numbers have a strong effect on the formation recognition process.
There are also some constraint parameters. For example, the total number of floating point operations
which are allocated to the GSM to perform an evaluation of the MTI might be fixed by external factors
such as the required turn-around time.    

The behavior of the autonomous cognitive element  algorithm, i.e. the process by which it evaluates
the MTI, is determined by the values of these control parameters. For a proof-of-principle, a set of seven
parameters were selected: (the minimum filter scale size, the maximum filter scale size, the maximum
battalion area, the ellipse crisping factor, the minimum number of blips to qualify as a battalion, the
maximum number of blips to qualify as a battalion, the maximum number of search steps before
characterizing the cluster and restarting the filter). There can obviously be many more parameters.

5. INTERNAL FITNESS EVALUATION

As described in section 3, the GSM actor has a means of generating trial behaviors. Since the
behavior is specified by the seven parameter values, creation of a trial behavior is simply a matter of
generating trial values for the seven control parameters. The GSM actor also has, within its cognitive



structure, a mechanism for estimating the fitness or performance of a given behavior under the currently
perceived external conditions.  This mechanism works as follows.

First, a random set of military formations consistent with the currently perceived environment is
generated and placed within the actor’s working memory. These units are then “pinged”  using an internal
JSTARS model, accounting for the currently perceived weather, terrain, and visibility conditions, to
produce an internal blip list, which is also put in the GSM actor’s internal working memory.  With only a
slight semantic stretch, it can be said that the GSM actor imagines some military units on an imagined
battlefield, figures out what the resulting MTI could look like, and holds the resulting blip list in its mind.
The other actors in the external simulated battlefield do not know about any of this: it is all internal to the
GSM actor. Also in its mind, it has a model of its own behavior, as specified by the seven trial control
parameters.  This internal model of its own formation recognition process is then applied to the imagined
blip list, and the result is a list of battalions, which is also stored as an object in the working memory of
the GSM actor. The list of recognized battalions  can then be compared with the list of military formations
that were first imagined. This comparison gives a measure of fitness for the trail set of run-time GSM
parameters. To obtain a statistically meaningful estimate of this fitness, this whole process is repeated  a
number of times with independent  internal (imaginary) sets of military units, and the average performance
over this ensemble is taken as the fitness estimate of the trial set of control parameters.

The performance  of a run-time GSM against a particular set of vehicles is found by comparing the
list of recognized battalions against the list of military units used to generate the blip list, as follows. Each
battalion in the recognized battalion list is paired up with each battalion in the actual battalion list, and their
separation is calculated. The recognized-actual battalion  pair with the smallest separation is then scored by
how large the separation is. For zero separation, this pair contributes no recognition errors. For very large
separation, the pair would contribute two recognition errors (one actual battalion missed plus one false
alarm). A simple scoring formula adds  2/[1+(sw/s)2] recognition errors when the recognized battalion is a
distance s away from the actual battalion. The parameter sw is the error distance at which one recognition
error would be counted, whether or not the battalion were added to the recognized battalion list. A value of
6km was selected for sw. After the closest pair is scored, the actual and recognized battalions are removed
from their respective lists. The process is then repeated for the remaining battalions, accumulating the
recognition errors. When one list is empty, one recognition error is added for each remaining unit in the
other list. The accumulated number of recognition errors is the measure of performance of a behavior for a
particular MTI screen.

6. STRATEGY ADAPTATION BY GENETIC ALGORITHM

A genetic algorithm is used to search for better-adapted autonomous behaviors. Seven genes are used
to represent the seven control parameters. Each gene  is represented as a 7 bit binary string, allowing 128
possible values for each. The seven genes are concatenated into a 49 bit chromosome. The 249  possible
chromosomes then represent 5.6(10)14  alternative formation recognition strategies. A gradient decent
search strategy does not work because of the existence of many local optima, and lack of a derivative  of
the fitness with respect to the parameter or chromosome values. The genetic algorithm approach works as
follows.

First, the internal representation used to evaluate trial control parameters  is tied into the currently
perceived external conditions.  An initial population of trial chromosomes is constructed by copying the
original (current best) chromosome, and mutating a few bits at random. A population size of 24
chromosomes is appropriate for a 49 bit chromosome. The next step is to estimate the fitness of each of
these trial chromosomes, by running internal models of their resulting run-time GSM behaviors against
hundreds of internally generated MTI screens.  The next step is to evolve the population by stepping
through generations, looping over the four processes of 1) select parents  from the population, based on
their estimated fitness 2)breed new trial chromosomes, using genetic cross-over and mutation, 3) estimate
the fitness of the trial chromosomes, and 4) sort new chromosomes into the population, replacing less fit



chromosomes. Whenever a chromosome is found that has better estimated fitness than the current
autonomous behavior, the control parameters are replaced with  the better values.

7. DEMONSTRATION

A C++ object-oriented implementation of a JSTARS GSM simulation actor has been developed for
use in the Los Alamos battlefield simulation environments SAMSON, JOINTSIM, and JWARS. The
autonomous behavior is initialized to a baseline behavior that gives a first approximation to the training
received by GSM operators. The baseline set of control parameters is (minimum filter scale size = 0.3 km,
maximum filter scale size = 0.5 km, maximum battalion area = 20 square km, ellipse crisping factor = 2.0,
minimum number of blips to qualify as a battalion = 18, maximum number of blips to qualify as a battalion
= 38, maximum number of steps per cluster search = 45). In the initial battlefield environment, one
battalion is expected in the MTI coverage area, the formation is exactly given by doctrine, and the visibility
is perfect. The autonomous behavior is limited to a maximum of 20,000 trig function evaluations per MTI
screen evaluation. The fitness estimator is set to use 200 random MTI screens to estimate the fitness of trial
behaviors. The baseline behavior is evaluated on the 200 MTI screens, and the fitness is found to be an
average of 0.0299 recognition errors per screen. The evolutionary apparatus then generates and evolves a
population of 24 trial behaviors. In less than two minutes, on an 80Mhz Power Macintosh, 144 trial
behaviors were generated and evaluated, and a new behavior was found which gives a fitness of 0.00527
recognition errors per screen (more than five times better). The new control parameters are (minimum filter
scale size = 0.85 km, maximum filter scale size = 2.43 km, maximum battalion area = 15.2 square km,
ellipse crisping factor = 1.77, minimum number of blips to qualify as a battalion = 21, maximum number
of blips to qualify as a battalion = 62, maximum number of steps per cluster search = 99). These
parameters give an autonomous GSM behavior that is effective for one expected battalion in a 40x25 km
area, when the formations are not significantly different from doctrinal.  

At some later time, however, the battlefield conditions  have changed so that there are expected to be
four battalions, two independent companies,  and 10 independent squads in the battlefield. In addition, the
visibility drops to 70% due to battlefield haze, and the formations are disrupted to the degree that within a
unit, every sub-unit is off of its doctrinal position by up to 40% of the size of the unit (battalions within
brigades or regiments, companies within battalions, platoons within companies, and squads within
platoons). The previous behavior is evaluated on 200 MTI screens consistent with the new conditions, and
the fitness is found to be an average of 0.743 recognition errors per screen. The evolutionary apparatus
then evolves its population of 24 trial behaviors. In 25 minutes, on an 80Mhz Power Macintosh, 100 trial
behaviors are evaluated, and a new behavior found which gives a fitness of 0.188 recognition errors per
screen. The new control parameters are (minimum filter scale size = 0.42 km, maximum filter scale size =
1.11 km, maximum battalion area = 15.0 square km, ellipse crisping factor = 2.81, minimum number of
blips to qualify as a battalion = 18, maximum number of blips to qualify as a battalion =56, maximum
number of steps per cluster search = 107). These parameters give an autonomous GSM behavior that is
better adapted to the new battlefield conditions.

At some later time yet, the battlefield conditions  again change so that there are expected to be three
battalions moving as part of a regiment plus another independent battalion. The visibility has dropped to
50% due to battlefield haze, and the formations are disrupted to the degree that within a unit, every sub-
unit is off of its doctrinal position by up to 20% of the size of the unit. The previous behavior is evaluated
on 200 MTI screens consistent with the new conditions, and the fitness is found to be an average of 2.256
recognition errors per screen.  The evolutionary apparatus then evolves its population of 24 trial behaviors.
In 34 minutes, on an 80Mhz Power Macintosh, 135 trial behaviors are evaluated, and a new behavior
found which gives a fitness of 0.9825 recognition errors per screen. The new control parameters are
(minimum filter scale size = 0.14 km, maximum filter scale size = 0.30 km, maximum battalion area =
10.2 square km, ellipse crisping factor = 1.61, minimum number of blips to qualify as a battalion = 8,
maximum number of blips to qualify as a battalion =46, maximum number of steps per cluster search =
111). Even though the autonomous GSM behavior has adapted to the new battlefield conditions, it does



not take the obvious strategy of locating regiments before battalions. This points out the necessity to be
able to represent a vast variety of alternative behaviors .

The old and evolved control parameter sets can be tested against other set of internal MTI screens.
Independent sets of 200 screens were generated, and used to determine the statistical variance in the
estimate of the fitness of behaviors. For 200 screens, the error in the estimate is negligible compared to the
differences in fitness of different behaviors. The behaviors are adapting to the new environment, not
merely learning a training set of MTI screens. The use of internal test sets to reevaluate trial chromosomes
can provide a mechanism to adjust the number of MTI screens needed to provide a reliable fitness estimate.

8. CONCLUSION

It is the nature of complex systems, composed of many interacting elements, that unanticipated
phenomena develop. Computer simulation, in which the elements of a complex system are implemented as
interacting software objects, is an effective tool to study these complex systems. A new cognitive
architecture has been developed for constructing simulation actors that can adapt to external conditions that
were never considered by the actor builders. The cognitive architecture extends non-adaptive and
traditional adaptive architectures (in which a set of external parameters is sensed, and the behavior of the
actor is adjusted according to these parameters in a pre-programmed way). The new cognitive architecture
generates trial behaviors in its mind, estimates their fitness using an internal representation of the system,
and uses an evolutionary apparatus to continuously  adapt a set of trial behaviors to environmental
conditions.

This architecture has two application-specific components: a parameterized set of behaviors which
can emulate the behavior of the system element represented by the actor, and an internal representation of
the external system which can be used to estimate the fitness of trial sets of the autonomous cognitive
element’s  control parameters. The generation and adaptation of the trial control parameter sets is
accomplished in application-independent elements of the cognitive architecture.

A specific simulation actor has been developed to represent the ground station module that evaluates
JSTARS images of vehicles on battlefields. The cluster location, characterization and discrimination
processes performed by the intelligent human GSM operator were implemented into a parameterized set of
behaviors by using a newly developed family of 2D cluster filters. This GSM actor has demonstrated the
ability not only to recognize military formations under prescribed conditions, but to adapt its behavior to
unanticipated conditions that develop in the complex simulated battlefield system.
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